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1.  INTRODUCTION 
Current methods of designing digital devices 

become extremely complex for large quantities of 
input-output (I/O) bits. Both the Quine-McClusky 
and iterated consensus algorithms are impractical 
for input bit sizes much larger than 10 and output 
sizes greater than 1. An alternative approach to 
digital network synthesis, applicable to devices 
requiring large I/O bit sizes, has been proposed by 
M.  G. Karpovsky.    In the methods developed, 
digital networks (realizing logical functions) are 
represented  by a system consisting of a basis 
generator (where either Haar or Walsh functions 
form the basis), a memory containing expansion 
coefficients   ("spectra"),   a   multiplier,   and   an 
adder.    For realization  of systems  of Boolean 
functions, the multiplier is not really necessary, 
since the basis functions assume the values 0 and 
±1, or ±1.  Because of the properties of Haar 
coefficients,  Haar expansions are preferable to 
Walsh expansions. The local dependence of each 
Haar coefficient on the original function allows one 
to decrease the number of nonzero coefficients in 
the expansion of the function. This is not possible 
with   Walsh   expansions,   since   the   Walsh   co- 
efficients depend on the values of the function over 
its entire domain of definition. Nonzero coefficients 
in a Haar expansion are reduced by a linear trans- 
formation. Karpovsky presents an algorithm that 
produces the optimal linear transformation of the 

arguments (Ch. 3, p. 1151); i.e., the Haar series of 
the function on the transformed arguments con- 
tains a minimum number of terms. In this algo- 
rithm, a matrix subject to certain constraints must 
be generated. It is the object of this paper to present 
a method for the production of this matrix. 

Requirements on S. —The matrix to be generated 
(S) is subject to two constraints. First, it must be 
invertible and second, the equation 

S®T = (1) 

must be satisfied, where ® represents ordinary 
matrix multiplication with all sums and products 

carried out modulo two,* and T is a binary vector 
related to the function being synthesized. Before a 
matrix can be produced which satisfies equation 
(1), it is necessary to examine a method of gener- 
ating invertible modulo two matrices. 

Invertible Modulo Two Matrices.—An arbitrary 
square matrix is nonsingular if the rows (columns) of 
the matrix are linearly independent. This standard 
theorem from linear algebra provides a method for 
the generation of invertible matrices. If the rows 
(columns) of the matrix are chosen from a linearly 
independent set of vectors, invertibility neces- 
sarily follows. A method to accomplish this is 
easily realizable (in base two) once it is observed 
that the columns of the matrix A = encode base 2: 
{1, 2, . . . , 2m _ '} contain all possible coefficient 
combinations for distinct linear combinations of a 
set of n vectors, where 1 < n < m. The columns of 
this matrix also form the set of all possible m-bit 
binary numbers (excluding zero). The properties 
of the matrix A allow it to be used both as a 
multiplier to form linear combinations and as a set 
(with the columns as its elements) from which the 
rows of the matrix being generated are chosen. 

To illustrate the properties of matrix A, a three- 
by-three invertible matrix (F) will be generated. 
For m = 3, 

A = 
0 0 0 1111 
0 110 0 11 
10  10  10  1 

Two columns of A are then arbitrarily chosen to be 
the first two rows of F, with the remaining row 
being filled in by the zero vector. Choosing the first 
two columns of A yields 

F = 

To complete F, it is necessary to compute all linear 

0 0 1 
0 1 0 
(1 0 0 

1 M. G. Karpovsky, Finite Orthogonal Series in the Design of Digital Devices, 

HaLstead Press, New York (1976), 100. 

' Unless otherwise stated, all arithmetic operations in this paper are performed 

modulo two. 



combinations of the first two rows of F. This is 
achieved by forming the matrix product of AT and 
F; i.e., 

A
T
®F: 

0 0  1 
0 1 0 
0 1   1 
1  0 0 
1  0   1 
1   1  0 
1 1 1 

'o 0 f 
0 ] 0 

.0 0 0. 

0 0 0 
0  1 0 
0  1 0 
0 0 1 
0 0  1 
0   1   1 
0  1   1 

= G. 

(2) 

1 1 1 r 
0 0   1 i 
0  1  0 i_ 

"0 0 r 
0 1 i) 

1 1 i 

The resultant matrix (G) has three distinct rows 
(excluding (0,0,0)), which are (0,1,0), (0,0,1), and 
(0,1,1). These three vectors are all the possible 
linear combinations of the rows of F. Deletion of 
these vectors from the columns of A produces a 
reduced matrix. 

B = 

from whose columns the last row of F may be 
chosen. Choosing column four yields 

F = 

which has a nonzero determinant, and thus an 
inverse matrix. Generalization of this method to 
higher-order matrices follows readily. A flowchart 
representing this method for a matrix of size m by 
m (m > 3) appears in figure  1 (p 7). 

2.   GENERATION OF S 

Generation of an invertible matrix (S) which 
satisfies equation (1) is now a fairly straight- 
forward matter. Since the product of S and T is the 
vt'ctor (0 0, 1), the vector product of any of the 
first (m - 1) rows of S with T must equal zero, and 
the product of the last row of S with T must equal 
one. These requirements allow two submatrices of 

the matrix A = encode base2: {l, 2,. . ., 2m ~ ;} 
to be formed, one from which the first (m - 1) 
rows of S are chosen, and another from which the 

last row of S is chosen. Set representations of these 
two matrices are 

C = {columns of A ' a,-  0 T= 1) and 

D = {columns of A    a,  QT = 0} 

where © represents the dot product modulo two, 
and 1 <j <(2m"1) 

2.1 Method I 

A method of generating S, which is similar to the 
procedure outlined for the generation of an in- 
vertible matrix, appears in figure 2 (p 8). One need 
only choose (m - 1) linearly independent columns 
of D for the first (m - 1) rows of S, then choose a 
column of C, which is independent of these 
columns of D, for the last row of S. 

Direct coding into APL of the algorithm 
presented in figure 2 is possible for m < 13. 
However, for m > 13, a 478096 byte workspace 
becomes filled, and the central processing unit 
(CPU) time necessary becomes excessive. The 
storage space necessary will be reduced if the way 
the data are represented in the computer is 
considered, and the CPU time will be reduced if the 
production of the linear combination matrix G 
(eq 2) is examined. 

Operating modulo two allows all variables and 
operations performed to be converted from integer 
to logical. Addition and multiplication modulo 
two are converted to "not equals" and "and," re- 
spectively. This change from integer to logical 
representation produces a reduction in storage 
space. For example, on the IBM 370/168 (in 
VSAPL), 648 bytes are required to store a matrix 
with 155 integer elements, while storage of the 
same matrix with logical elements requires only 48 
bytes. Thus, to decrease the storage space neces- 
sary, all operations and data will be logical. 

The actual CPU time necessary to compute S 
can be greatly reduced by considering the 
production of the linear combination matrix (eq 2). 
This reduction is accomplished by decreasing the 
size of A   and S. Considering the example where a 

(> 



f       INPUT m       J 

A *- ENCODE BASE2 {1,2,...2m-1l 

B-A 

I 
F-m by m ZERO MATRIX 

I 
F[1,2;]-(B[;1,21)T 

I 
I-3 

I 
A-AT 

IE 
G-A®F 

YES /    ANY    \ 
B - B, WITH THESE 
COLUMNS DELETED 

<       / ̂ COLUMNS OF\ 
*       \ sB =  ROWS OF/ 

\ F 

N.       G      jS 

JNO 

F[I;1-(B[;1])T 

i 
k. 1-1 + 1 

NO 

Figure 1.   Generation of an Invertible Matrix. 



Q      INPUTT J 

m*-# ELEMENTS INT 

NOTE:    O DENOTES THE DOT PRODUCT 
WITH SUMS AND PRODUCTS 
CARRIED OUT MODULO TWO. 

A _ ENCODE BASE TWO 
{1,2 2m-1} 

c ^COLUMN^OF A 
3 a, o T = 1 

D _C6LUMN^6F A 
3 a, o T = 0 

S - m by m ZERO MATRIX 

I 
S[1,2;]-(D[;1,2])T 

= 1,2 2m-1 

i-l + 1 

S[I;1-(D[;1])T 

I-3 

I 
A-AT 

G-A®S 

YES 
ANY 

ROWS OF \ NO 
^G = COLUMNSJX- ►" 

OFC 

r ^      C, WITH THESE 
COLUMNS DELETED 

D, WITH THESE 
COLUMNS DELETED SIm;I-(C[;1])T 

V 
( STOP J 

Figure 2.    Method I: Generation of S. 



3-by-3 matrix was^enerated, it is observed that the 
third column of A and the third row of F (eq 2) are 
not needed to compute G. Deletion of the third 
column of A   gives 

vT = 

"o o" 
0 1 
0 1 

1 0 
1 0 

1 1 
1 1 

This size of this matrix may be further reduced by 
deleting all odd rows (which, except for row 1, are 
duplicates of the preceding even row); i.e., 

1  0 
1 1 

The product of this matrix with the first two rows 
of F is 

AT ®F[1,2] = 
0 1] 

1 (1 
1 1 

po n 
[p 1 oj 

0 1 0" 
0 0 1 

_0 1 1 
G' (4) 

Comparing G' with the matrix G of equation 2 
shows that the same basic result has been achieved, 
but with a considerable decrease in the number of 
operations performed. 

Generation of an m-by-m matrix (S), requires 
the matrix AT to have shape (2m-l) by m. Thus, A 
has (m2m — m) elements. Removal of the last 
column of A1 leaves a matrix with rows which are 
not needed when computing the linear combination 
matrix G. Further removal of all odd rows of AT 

(the rows which are not needed) yields a reduced 
matrix A'T with shape (2m ~ 1 - l)by(m - 1), 
which contains (m2m ~ 1 + I - 2m ~ l) ele- 
ments. This matrix A'T has [(2m_ 1 (m + 1)) -l] 
elements less than the original A , and is the largest 
matrix necessary for the computation of G. Further 
reductions of A' , which depend upon the index of 

0 0 1 
0 1 0 
0 1  1 
1 0 0 
1 0  1 
1  1 0 
1 1 1 

the row (of S) being filled, are also possible. A pro- 
cedure for reducing A'Twhen filling the Ith row of 
S follows. 

(1) Delete all rows of A'T except those with 
indices contained in (2m _ ') x (1,..., 21 ~ * — l), 
where x represents ordinary multiplication. 

(2) Delete all but the first (I - 1) columns from 
A' . Forming the product A and the first (I — 1) 
rows of S will now produce the desired matrix 
G. Considering the case m = 4, the initial re- 
duction of A   produces 

.'T = 

T 
Letting 1 = 3, all rows of A' , except those with 
indices 2,4, and 6, and all columns except the first 
(I — 1) = 2, are deleted, leaving 

A'T- 

T 
The product of A'   and the first two rows of S may 
now be formed to produce the reduced G. Thus, for 
I = 3, the original matrix AT has been reduced 
from a 15 by 4 to a 3-by-2 matrix, which decreases 
the total number of elements from 60 to 6. 

When implemented in VSAPL, the algorithm in 
figure 2, with the inclusion of the optimization pro- 
cedures just discussed, can handle up to 16 I/O 
bits. 

2.2 Method II 

A second method for generating S, which uses 
very little CPU time and storage space, is presented 
in this section. This method is programmable in 
VSAPL and can handle more than 1000 I/O bits. 

Examination of the set D', which has the 
columns of D plus the zero vector as its elements. 

0 l" 
1 0 

J 1 



yields the observation that D' forms a group with 
respect to ©. Thus, D' is closed under ©, and 
the elements of C, which are the columns of C, are 

independent of the elements of D'. From this 
property, it is observed that the last row of S may 
be filled by any vector whose product with T is 1. 

The first (m — 1) rows of S are filled by 
generating (m — 1) m-bit vectors, which occupy 
different subspaces_of m-dimensional space, and 
whose product with T is equal to zero. Since each of 
these vectors exists in a different subspace than 
each of the other (m — 2) vectors, they form a 
linearly independent set. A classic example of this 
is the "natural basis;" i.e., for m = 3, the natural 
basis is E,, E2, Ej, or (1, 0, 0) (0, 1, 0), (0, 0, 1). 

The first n rows of S are filled by vectors from 
the natural basis which correspond to the positions 
of the zeros in T, where T contains n zeros and p 
ones with (n + p) = m. This leaves (m — n — 1) = 
(p — 1) rows to fill (excluding the 
mth row). The vectors which are produced to fill 
these remaining rows contain two ones and 
(m — 2) zeros. The first "one" always occursjn the 
bit occupied by the first one appearing in T. The 
position of the second one ranges over alljhe bits 
occupied by the remaining (p — 1) ones in T. Since 
there are p ones and the position of the second one 
assumes (p — 1) different positions, (p — 1) vec- 
tors are generated. Thus, (p — 1) + n = (m — 1) 
rows of S are filled. A suitable vector for the mth 
row of S is one which has a one in the bit occupied 
by the first one in T, and zeros everywhere else. For 
example with T = (1, 0, 1, 1, 0) the first two rows 

of S are 

(or E2 and E,); the third and fourth rows of S are 

[0100 0] 
[p 0 0 0 ij 

n o i o o] 
|_i o o i oj 

and the fifth row of S is (1, 0, 0, 0, 0). Thus, 

S = 

0   1  0 0 0~ 
0 0 0 0  1 
10   10 0 
10 0   10 

_1  0 0 0 0 

and the 

product of S and T equals (0, 0, 0, 0, 1). A 
flowchart of this method appears in figure 3(p 11), 
and a program that implements it in VSAPL ap- 
pears in appendix A (p 13). 

3.   SUMMARY 

Two procedures have been developed for the 
generation of an invertible modulo two matrix 
which satisfies equation 1. Method 1 is based on an 
algorithm developed for the production of in- 
vertible modulo two matrices, while Method 11 
produces the required matrix by a direct ex- 
amination of the input vector T. Both methods 
have been implemented in VSAPL, and the 
program for Method II, which can generate much 
larger matrices than the program for Method 1. 
appears in appendix A. This program will generate 
matrices of size 1000 by 1000 (or with 100,000 
elements) in a 178096 byte workspace. 

10 



c INPUTT 3 
m-# ELEMENTS INf 

I 
r     VECTOR, OF INDICES 
_        OF THE ONES INT 

I 
„     VECTOR, OF INDICES 

OF THE ZEROES INT 

G- 

A 1 BY m VECTOR WITH 
A ONE IN POSITIONS 
C[1] AND C[J], ZEROES 
EVERYWHERE ELSE 

Figure 3.   Method II: Generation of S. 
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APPENDIX A. 

APPENDIX A. — Program to generate Matrix S 

A program that generates the matrix S (eq 1, which are larger than 1000 by 1000. The program 
body of report) is presented in figure A-l. The itself is a direct coding into VSAPL of the algorithm 
program is written in VSAPL, and was run on an presented in figure 3 (body of report). The input to 
IBM 370/168 computer.  With a workspace of this program is the vector T (as a row vector) and 
478096 bytes, this program will produce matrices the output is the matrix S. 

vSIGMfi  [Q]  V 
v s-SIGHfi Tift;C;D}E;G;l;J',M;N 

tl]     *   THIS FUNCTION GENERATES AN  INUERTIBLE MATRIX WHICH 
[2]     *  SATISFIES KARPOVSKY'S MATRIX EQUATION. 
[31       M+fT 
[4]       A-iM 
[51       C-T/A 
[61       D-("T)/A 
[71       N*-rD 
[81       S*-(M,M)fQ 
[91     «  FILLING  THE FIRST N R0US OF S UITH VECTORS FROM 
[101   «   THE NATURAL  BASIS   . 
[Ill    E*-D'.'A 
[121    Sl\N}]*-E 
[131     *lN>M-i)/LAST 
[141     I*-N*l 
[151    J-2 
[161   « ENTERING A LOOP WHICH FILLS ROUS N*l   TO M-l. 
[171 Hir:G«-v/[ll(C[l>Jl-.-rt) 
[181   stin*6 
[191    I*-I*l 
[201    J*J*i 
[211     *(IiM-i)/HIT 
[221 • FINISH LOOP  . 
[231 M 
[241 « FILLING LAST ROU OF  S. 
[251 LAST'.SIM; ^(Clll'A) 

7 

Figure   A-l.   Program that generates matrix S (eq 1, body of report). 

13 
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